

New Energy For Southern Vermont Forum: Thermal Biomass Energy

Presentation for Bennington County Regional Commission

March 21st, 2013

Adam Sherman
Biomass Energy Resource Center at VEIC

The Working Landscape in Vermont

Importance of Managed Forests as part of the Working Landscape

Low-grade Portion of Forest Biomass Inventory Ecologically Appropriate for Harvest

Conceptual Forest Inventory and Net Annual Growth over Time

Conceptual Forest Inventory, Growth, and Removals over Time

Wood Resource Assessment

	Forestland (Acres)	Annual Growth Low Grade Wood (Green Tons)	Annual Harvesting Low- grade Wood (Green Tons)	NALG Wood (Green Tons)
Bennington, VT	362,196	150,486	52,754	91,731
Rutland, VT	433,186	202,323	51,180	132,981
Windsor, VT	510,487	266,600	184,819	104,055
Windham, VT	431,556	257,163	90,947	141,367
Washington, NY	267,438	116,114	70,000	49,606
Rensselaer, NY	251,749	80,538	65,000	20,796
Berkshire, MA	454,039	315,214	50,000	251,674
TOTAL	2,710,651	1,388,438	564,700	792,210

Traditional Wood Fuels

Chunkwood

PROS: Simple, cost effective, easy to self-supply

CONS: Manual feed, less efficient combustion, less convenient

Chips

PROS: Cost effective fuel, by-product supply, great for heating large facilities

CONS: High capital costs, not effective for residential heating

Pellets

<u>PROS:</u> Energy dense fuel, clean burning, efficient, and convenient

CONS: Slightly higher cost per MMBtu

How Much Heating Oil Used in Bennington County could be Replaced with Local Wood?

Rough Assumptions *

- 37,000 population in 2010
- 2.2 people per household
- 60% of homes heating with oil
- 750 gallons heating oil per home

- = 7.5 million gallons of heating oil annually just for residential
- = 908,181 MMBtu/yr
- = 92,000 green tons of wood
- = Over \$26 million dollars annually spent on heating oil (@\$3.50/gallon)

^{*} Numbers are rough estimates intended for conversational purposes and do not reflect in-depth analysis

Bennington College

BENNINGTON, VERMONT, UNITED STATES

- ☐ Heating Capacity (output): 4.0 MW (14 MMBtu/hr)
- ☐ Year Installed: 2008
- ☐ Annual Woodchip Use: 4,000 green tons
- ☐ Thermal Output: Steam for heating and DHW for 388,000 square feet of buildings
- ☐ Amount of Oil Displaced: Off-sets 400,000 gallons of oil annually

The Vermont Wood Energy Experience

STATS

- □ 2 Power Plants
- 41 Public Schools
- ☐ 1 Hospital
- ☐ 5 State Office Complexes
- ☐ 3 Housing Complexes
- ☐ 3 College Campuses
- □ Dozens of Businesses

Success Factors

- **□** 25 + years
- ☐ Strong political and public support
- ☐ High oil prices and volatility
- ☐ VT Fuels for Schools Program (partnerships of agencies and orgs)
- ☐ Relatively little natural gas infrastructure
- ☐ Transition to commodity fuel supply

The Austrian Example: A Model for Vermont?

- ☐ Thousands of wood boilers
- ☐ Hundreds of farmer owned district heating systems
- ☐ Dozens of businesses manufacturing heating systems
- ☐ A robust wood energy economy integrated with tourism and working landscape

WOODCHIP DISTRICT HEATING SYSTEM

Cooperatively Owned System

BUCHKIRCHEN, AUSTRIA

 Emissions Reduction and Combustion Control Equipment: Multi-cyclone, moving grates

Year Installed: 2006

Thermal Output: Hot water for heating

District Heating Network Length: 1.8 km (1 mile)

Number of Customers: 25

Annual Fuel Use: 1,300 Green Tons Chips

Capital Cost: \$1.3 million (15 year payback)

Cost of Heating Fuels

Based on \$3.50/gallon heating oil & \$56.00/green ton woodchips

Vermont School Heating Fuel Price History

Parting Comments

- ☐ Biomass energy is not perfect—it is better.
- ☐ Replace oil and propane with local renewable fuel
- ☐ Create local jobs
- ☐ Lower carbon footprint
- □ Keep dollars in local economy
- ☐ Create local, stable markets for low-grade and small diameter wood products

Questions?

Contact Information

Adam Sherman
Biomass Energy Resource Center at VEIC
128 Lakeside Ave. Suite 401
Burlington, VT 05401
(802) 540-7863
asherman@biomasscenter.org
www.biomasscenter.org

Modern Hot Water District Heating Piping

Air Emissions

Source: Dr. Christian Rakos, ProPellet, Austria

- ☐ Modern advanced combustion technology has increased efficiency and lowered CO emissions
- ☐ State of the art and particulate emission control technologies are available and more cost effective than in the past
- ☐ Use of an ESP can lower PM emissions below oil fuel emission levels and possibly lower required stack heights ☐ Boilers less than 4.5 MMBH currently do not require
- State permits however, Act 250 permitting may closely review emissions

Fuel Costs

Woodchip Price		Oil Price		Propane Price		Natural Gas Price	
per Green Ton		per Gallon		per Gallon		per Therm	
\$	15.00	\$	0.26	\$	0.19	\$	0.21
\$	20.00	\$	0.34	\$	0.25	\$	0.27
\$	25.00	\$	0.43	\$	0.32	\$	0.35
\$	30.00	\$	0.51	\$	0.38	\$	0.41
\$	35.00	\$	0.60	\$	0.44	\$	0.48
\$	40.00	\$	0.68	\$	0.50	\$	0.54
\$	45.00	\$	0.76	\$	0.56	\$	0.61
\$	50.00	\$	0.86	\$	0.62	\$	0.69
\$	55.00	\$	0.94	\$	0.68	\$	0.75
\$	60.00	\$	1.03	\$	0.74	\$	0.83
\$	65.00	\$	1.10	\$	0.80	\$	0.89
\$	70.00	\$	1.19	\$	0.86	\$	0.96
\$	75.00	\$	1.28	\$	0.92	\$	1.03
\$	80.00	\$	1.37	\$	0.98	\$	1.09
\$	85.00	\$	1.44	\$	1.05	\$	1.17
\$	90.00	\$	1.53	\$	1.11	\$	1.22
\$	95.00	\$	1.64	\$	1.19	\$	1.30
\$	100.00	\$	1.70	\$	1.26	\$	1.38

Biomass Heating System Configuration Options

Fuel Storage

Combustion Equipment

Emissions Control Equipment & Stack

Pellet Silos Slab chip bins Below grade chip bins Stoker/fixed grate
Stoker/moving grate
Pneumatic/suspension
Fluidized bed

Single cyclone Multi-cyclone Baghouse ESP

Interconnection with District Heating Plant

Residential Heat Transfer Station with Metering

Fuel Sources and Quality

Pellet Fuel Manufacturing

Currently only one pellet mill in Vermont:

- □ Vermont Wood Pellet located in
- Clarendon, VT
- ☐ Produces approx. 20,000 tons/yr

Rest of supply is imported:

- ☐ Quebec
- New Hampshire
- □ Maine
- New York
- and beyond

There is a growing number of brokers and pellet distributors in the region.

The Carbon Cycle

Biomass Heated Buildings vs. Fossil Fuel Heated Buildings

Better Technology = Fewer Emissions

Source: Dr. Christian Rakos, ProPellet, Austria

- ☐ Modern advanced combustion technology has increased efficiency and lowered CO emissions
- ☐ State of the art and particulate emission control technologies are available and more cost effective than in the past

Forest Impacts

- ☐ Real versus Perceived Impacts?
- ☐ Stem-only or Whole-tree Harvest?
- ☐ Slash or Roundwood Utilization?

Need to Clearly Communicate Local Silviculture Practices and any Existing Standards that Help Protect:

- Water Quality
- Wildlife Habitat
- ☐ Long Term Site Productivity
- Biodiversity